4.7 Article

A resilient and lightweight cellulose/graphene oxide/polymer-derived multifunctional carbon aerogel generated from Pickering emulsion toward a wearable pressure sensor

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 628, 期 -, 页码 574-587

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2022.07.188

关键词

Carbon aerogel; Wearable piezoresistive sensor; Pickering emulsion

资金

  1. National Natural Science Foundation of China [21664006, 21604025]
  2. Natural Science Foundation of Guangxi Province [2016GXNSFAA380004]
  3. Bagui Scholar Program of Guangxi Province

向作者/读者索取更多资源

In this study, a robust strategy was demonstrated to fabricate compressible and multifunctional carbon aerogels utilizing freeze-drying of cellulose nanofibers and graphene oxide co-stabilized Pickering emulsion gel, followed by high-temperature annealing. The resulting carbon aerogel exhibited tunable mechanical, hydrophilic, and hydrophobic properties, and showed great potential for various applications such as sensors, thermal insulation, and photothermal conversion.
In the new era of competitive smart electronics, the development of compressible multifunctional carbon aerogels is highly needed, but still faces enormous challenges. Here we demonstrate a robust strategy to fabricate multifunctional carbon aerogel via freeze-drying of cellulose nanofibers (CNF) and graphene oxide (GO) co-stabilized Pickering emulsion gel followed by high-temperature annealing. The resulting carbon aerogel exhibits tunable mechanical, hydrophilic and hydrophobic properties due to varying the elemental composition and the pyrolysis of introduced polymers. The carbon aerogel is resilient against high compression strain up to 99 % and has ultralow density (1.82 mg/cm(3)). The CNF/GO/acrylonitrile butadiene styrene-derived carbon aerogel (CRA)-based sensor has shown desirable sensitivity (17.65 kPa(-1)), ultralow detection limit of pressure (60 Pa), and fast responsive time (130 ms), which is capable of detecting human activity, identifying spatial pressure distribution, and communicating with smartphones via Wi-Fi. Moreover, the carbon aerogel reveals effective thermal insulation and photothermal conversion performance. These results suggest the great potentials for developing lightweight and compressible carbon aerogels with multiple functions to meet various applications. (C) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据