4.7 Article

Multi-objective optimization of concentrated solar power plants from an energy-water-environment nexus perspective under distinct climatic conditions-Part B: Environ-economic analysis

期刊

JOURNAL OF CLEANER PRODUCTION
卷 385, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.135689

关键词

Renewable energy; Environmental impact assessment; Water cost; Pareto optimization; Multi-objective evaluation

向作者/读者索取更多资源

The objective of this study is to include environmental impact in optimization of concentrated solar power plants. Numerical investigations are conducted to compare the performance of solar towers and parabolic trough collectors at different climatic zones. Techno-economic analysis is used to quantify water usage and compare the environmental impact of concentrated solar power plants with natural gas-based power plants. Multi-objective 'balanced' solutions are proposed, which offer low levelized cost of electricity, high electricity generation, and significant reduction in environmental impact. Semi-arid climates are found suitable for concentrated solar power plant installation.
The objective of this study is to include environmental impact in optimization of concentrated solar power plants previously limited to techno-economic analysis only. Performance of solar towers and parabolic trough collectors equipped with dry and wet cooling is numerically investigated at 10 min interval for three climatic zones. Based on electricity generation profiles pertinent to variation of design variables of solar multiple and thermal energy storage, the water usage is quantified techno-economically, considering water scarcity levels. Besides, five different potential impacts over lifecycle of concentrated solar and natural gas-based power plants are compared after unifying them into metric of net environmental impact avoided. Additionally, utilizing techno-economic solutions and eco-friendly solutions, multi-objective 'balanced' solution is proposed. It is found that levelized cost of water increases five-fold for areas with extreme water scarcity and is higher for trough than solar tower. Net environmental impact of troughs is higher and lower electricity generation causes the avoided impact to be higher than solar towers, when compared with natural gas-fired power plants. For eco-friendly solutions, solar multiple varies from 3.5 to 4 with thermal energy storage of 24 h. Dry-cooled solar towers with optimal solar multiple in range of 3-3.2 and thermal energy storage of 18.8-19.9 h are evaluated for pareto-optimality based 'balanced' solutions for all zones. These solutions offer minimum net levelized cost of electricity, alongside maximized electricity generation, huge return on invested capital and energy, and reducing environmental impact by over 94%. Lastly, semi-arid climates are found suitable for concentrated solar power plant installation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据