4.7 Article

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 19, 期 3, 页码 783-789

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.2c00807

关键词

-

向作者/读者索取更多资源

This work introduces a strategy called reference-state error mitigation (REM) for quantum chemistry, which can be implemented on current and near-term devices. REM can be applied alongside existing mitigation procedures with minimal post-processing and additional measurements. The method is designed for the variational quantum eigensolver and shows significant improvement in the computational accuracy of ground state energies of small molecules on superconducting quantum hardware. Simulations of noisy circuits with a depth exceeding 1000 two-qubit gates demonstrate the scalability of the method.
Decoherence and gate errors severely limit the capabilities of state-of-the-art quantum computers. This work introduces a strategy for reference-state error mitigation (REM) of quantum chemistry that can be straightforwardly implemented on current and near-term devices. REM can be applied alongside existing mitigation procedures, while requiring minimal post-processing and only one or no additional measurements. The approach is agnostic to the underlying quantum mechanical ansatz and is designed for the variational quantum eigensolver. Up to two orders-of-magnitude improvement in the computational accuracy of ground state energies of small molecules (H2, HeH+, and LiH) is demonstrated on superconducting quantum hardware. Simulations of noisy circuits with a depth exceeding 1000 two-qubit gates are used to demonstrate the scalability of the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据