4.7 Article

Electronic circular dichroism from real-time propagation in state space

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 158, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0136392

关键词

-

向作者/读者索取更多资源

In this paper, the authors propose a method for computing the electronic circular dichroism (ECD) spectra of chiral molecules using real-time propagation of the time-dependent Schrodinger equation (TDSE). By coupling TDSE with a given treatment of the electronic structure of the target, the time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The results show that the time-domain ECD spectra accurately reproduce the frequency-domain ones obtained from linear-response theory and agree quantitatively with available experimental data.
In this paper, we propose to compute the electronic circular dichroism (ECD) spectra of chiral molecules using a real-time propagation of the time-dependent Schrodinger equation (TDSE) in the space of electronic field-free eigenstates, by coupling TDSE with a given treatment of the electronic structure of the target. The time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The full matrix representing the transition magnetic moment in the space of electronic states is generated from that among pairs of molecular orbitals. In the present work, we show the ECD spectra of methyloxirane, of several conformers of L-alanine, and of the lambda-Co(acac)(3) complex, computed from a singly excited ansatz of time-dependent density functional theory eigenstates. The time-domain ECD spectra properly reproduce the frequency-domain ones obtained in the linear-response regime and quantitatively agree with the available experimental data. Moreover, the time-domain approach to ECD allows us to naturally go beyond the ground-state rotationally averaged ECD spectrum, which is the standard outcome of the linear-response theory, e.g., by computing the ECD spectra from electronic excited states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据