4.7 Article

First-principles redox energy estimates under the condition of satisfying the general form of Koopmans' theorem: An atomistic study of aqueous iron

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 157, 期 18, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0098476

关键词

-

资金

  1. NSERC of Canada
  2. McGill Engineering Doctoral Awards program
  3. FQRNT

向作者/读者索取更多资源

This work explores the relative accuracy of a hybrid functional in predicting redox properties while satisfying the general form of Koopmans' theorem. Through direct comparison and first-principles calculations, it is found that employing a total energy difference approach can provide theoretically robust estimates of redox energies when using hybrid functionals.
In this work, we explore the relative accuracy to which a hybrid functional, in the context of density functional theory, may predict redox properties under the constraint of satisfying the general form of Koopmans' theorem. Taking aqueous iron as our model system within the framework of first-principles molecular dynamics, direct comparison between computed single-particle energies and experimental ionization data is assessed by both (1) tuning the degree of hybrid exchange, to satisfy the general form of Koopmans' theorem, and (2) ensuring the application of finite-size corrections. These finite-size corrections are benchmarked through classical molecular dynamics calculations, extended to large atomic ensembles, for which good convergence is obtained in the large supercell limit. Our first-principles findings indicate that while precise quantitative agreement with experimental ionization data cannot always be attained for solvated systems, when satisfying the general form of Koopmans' theorem via hybrid functionals, theoretically robust estimates of single-particle redox energies are most often arrived at by employing a total energy difference approach. That is, when seeking to employ a value of exact exchange that does not satisfy the general form of Koopmans' theorem, but some other physical metric, the single-particle energy estimate that would most closely align with the general form of Koopmans' theorem is obtained from a total energy difference approach. In this respect, these findings provide important guidance for the more general comparison of redox energies computed via hybrid functionals with experimental data. Published under an exclusive license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据