4.5 Article

Spatial frequency domain Mueller matrix imaging

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 27, 期 12, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.27.12.126003

关键词

brain tissue; Mueller matrix; polarimetry; scattering; spatial frequency domain imaging; tissue anisotropy

向作者/读者索取更多资源

This study developed an instrument that combines Mueller matrix polarimetry (MMP) and spatial frequency domain imaging (SFDI), and demonstrated that this combination enhances contrast of features in reflection mode and provides additional spatial frequency phase information.
Significance: Mueller matrix polarimetry (MMP) and spatial frequency domain imaging (SFDI) are wide-field optical imaging modalities that differentiate tissue primarily by structure alignment and photon transport coefficient, respectively. Because these effects can be related, combining MMP and SFDI may enhance tissue differentiation beyond the capability of each modality alone. Aim: An instrument was developed to combine MMP and SFDI with the goal of testing whether it enhances contrast of features in reflection mode. Approach: The instrument was constructed using liquid crystal elements for polarization control, a digital light processing projector for generating sinusoidal illumination patterns, and a digital camera for imaging. A theoretical analysis shows that the SFD Mueller matrix is complex-valued and does not follow the same behavior as a regular Mueller matrix. Images were acquired from an anisotropic tissue phantom, an optical fiber bundle, and cerebellum, thalamus, and cerebrum tissues. Results: The measurement results suggest that singly scattered, few scattered, and diffusely scattered photon paths can be distinguished in some of the samples investigated. The combined imaging modality yields additional spatial frequency phase information, which highlights paths having only a few scattering events. Conclusions: The combination of MMP and SFDI offers contrast mechanisms inaccessible by each modality used alone. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据