4.7 Article

Signatures of selection in indigenous Chinese cattle genomes reveal adaptive genes and genetic variations to cold climate

期刊

JOURNAL OF ANIMAL SCIENCE
卷 101, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jas/skad006

关键词

adaptive allele; cattle; cold adaptation; selective sweep; thermogenesis

向作者/读者索取更多资源

This study provides new insights into genetic adaptations to cold environments in indigenous Chinese cattle by analyzing the selection signatures in their genomes. It reveals that local cattle breeds have adapted to extremely cold temperatures through natural and artificial selection. The study identifies several candidate genes and alleles associated with cold adaptation and highlights the complexity of genetic adaptation among different cattle breeds. This research contributes to our understanding of how cattle adapt to cold climates and furthers our knowledge of genetic variation in response to temperature changes.
This study provides novel insights into genetic adaptations to cold environments in indigenous Chinese cattle. Lay Summary Cold climates can affect cattle performance, survival, and health. Local cattle breeds have been adapted to the local environments including extremely cold temperatures after a long period of natural and artificial selection. Selection and local adaptation are shaping populations. However, identifying loci associated with cold adaptation has been a major challenge. We used high-density SNP arrays and resequencing data to comprehensively analyze and compare the genomic selection signatures of Chinese northern and southern cattle, and elucidated several adaptive genes and alleles involved in cold adaptation. The complexity of genetic adaptation mechanism among different low-temperature adapted cattle breeds was also emphasized. Cold climate shapes the genome of animals and drives them to carry sufficient genetic variations to adapt to changes in temperature. However, limited information is available about the genome-wide pattern of adaptations to cold environments in cattle. In the present study, we used 777K SNP genotyping (15 Chinese cattle breeds, 198 individuals) and whole genome resequencing data (54 cattle breeds of the world, 432 individuals) to disentangle divergent selection signatures, especially between the cold-adapted (annual average temperature of habitat, 6.24 degrees C to 10.3 degrees C) and heat-adapted (20.2 degrees C to 24.73 degrees C) Chinese native cattle breeds. Genomic analyses revealed a set of candidate genes (e.g., UQCR11, DNAJC18, EGR1, and STING1) were functionally associated with thermogenesis and energy metabolism. We also characterized the adaptive loci of cattle exposed to cold temperatures. Our study finds new candidate genes and provides new insights into adaptations to cold climates in cattle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据