4.7 Article

Effects of Mo content on the microstructure and mechanical properties of TiNbZrMox high-entropy alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 930, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.167373

关键词

High-entropy alloys; Microstructure; Mechanical properties; Processing; Wear performance

向作者/读者索取更多资源

The single-phase TiNbZrMox high-entropy alloys prepared by arc melting were investigated for their microstructure, mechanical properties, and wear resistance. It was found that the addition of molybdenum can improve the strength and hardness of the alloys, while reducing the specific wear rate. TiNbZrMo0.5 alloy exhibited the best comprehensive performance.
The single-phase TiNbZrMox (x = 0, 0.3, 0.5, 0.7, 1) high-entropy alloys (HEAs) were prepared by arc melting. The relation between molybdenum, microstructure, mechanical properties and wear resistance was investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM), universal tensile tester, hardness tester, friction tester, and wear tester. The results showed that TiNbZrMox alloys were composed of a single BCC phase. With the increase of Mo elements, the crystallite size of the as-cast alloy decreased first and then increased, both the alloy strength and hardness were increased and compressive strain plasticity was decreased. TiNbZrMo0.5 has the best comprehensive performance with a yield strength of 1.0 GPa, compressive strength of 1.3 GPa, and hardness of 429 HV; compared with TiNbZrMo0, yield strength increased by 77.32%, compressive strength increased by 25.14%, and hardness increased by 70.24%; and its specific wear rate decreased by 50%, while it's compressive plasticity only decreased by 5%. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据