4.4 Article

A study of two-dimensional single atom-supported MXenes as hydrogen evolution reaction catalysts using density functional theory and machine learning

期刊

出版社

WILEY
DOI: 10.1002/qua.27055

关键词

electrocatalysis; hydrogen evolution reaction; single atom; surface termination

向作者/读者索取更多资源

The researchers utilized density functional theory calculations to analyze the catalytic performance and stability of a series of two-dimensional single-atom MXene catalysts, and found that some of these catalysts exhibit electrocatalytic activity surpassing that of platinum and possess thermal stability.
Screening promising hydrogen evolution reaction (HER) electrocatalysts for water splitting is crucial for the industrial scalability of sustainable energy storage. As HER catalysts, two-dimensional (2D) MXenes are promising substitution materials for platinum. Tuning the surface termination and loading a single atom can help to improve the electrocatalytic performance of 2D MXenes. We utilized density functional theory (DFT) calculations to explore the catalyst activity, thermal stability, and dynamic stability of 2D single atom-loaded MXenes with surface terminations. We demonstrate that 21 uninvestigated 2D single-atom MXene catalysts, among 264 promising candidates, show an electrocatalytic activity surpassing that of platinum. Among the 21 most promising HER catalysts, 7 (Ti3C2I2-Ir, Ti3C2Br2-Cu, Ti3C2Br2-Pt, Ti3C2Cl2-Cu, Ti3C2Cl2-Pt, Ti3C2Se2-Au, and Ti3C2Te2-Nb) are dynamically and thermally stable. Furthermore, machine learning tools predicted the catalyst activity and thermal stability using elemental properties that are easily available in chemical data repositories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据