4.6 Article

Optimizing the preventive maintenance frequency with causal machine

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijpe.2023.108798

关键词

Maintenance; Causal inference; Individual treatment effects; Machine learning

向作者/读者索取更多资源

This study uses causal inference to learn the effect of preventive maintenance frequency on asset overhaul and failure rates, based on observational data. The learned outcomes are used to optimize maintenance schedules and minimize the combined cost of failures, overhauls, and preventive maintenance.
Maintenance is a challenging operational problem where the goal is to plan sufficient preventive maintenance (PM) to avoid asset overhauls and failures. Existing work typically relies on strong assumptions (1) to model the asset's overhaul and failure rate, assuming a stochastic process with known hazard rate, (2) to model the effect of PM on this hazard rate, assuming the effect is deterministic or governed by a known probability distribution, and (3) by not taking asset-specific characteristics into account, but assuming homogeneous hazard rates and PM effects. Instead of relying on these assumptions to model the problem, this work uses causal inference to learn the effect of the PM frequency on the overhaul and failure rate, conditional on the asset's characteristics, from observational data. Based on these learned outcomes, we can optimize each asset's PM frequency to minimize the combined cost of failures, overhauls, and preventive maintenance. We validate our approach on real-life data of more than 4000 maintenance contracts from an industrial partner. Empirical results on semi-synthetic data show that our methodology based on causal machine learning results in individualized maintenance schedules that are more accurate and cost-effective than a non-causal approach that does not deal with selection bias and a non-individualized approach that prescribes the same PM frequency to all machines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据