4.7 Article

Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study

期刊

出版社

MDPI
DOI: 10.3390/ijms24010591

关键词

nanoparticles; protein corona; membranes; surface plasmon resonance imaging; biomolecular interactions; blood serum proteins; nanocomplex dissociation rate; affinity

向作者/读者索取更多资源

Despite the promising use of nanoparticles in biomedical applications, concerns about their safety have increased due to several toxic effects. This study aimed to develop a fast and accurate method using surface plasmon resonance imaging (SPRi) technique to characterize the interaction between nanoparticles, proteins, and lipidic membranes. The interaction of gold nanoparticles with mimetic membranes and blood proteins was evaluated, revealing differences in surface concentration density and preferential binding to specific proteins for gold and silver nanoparticles.
Regardless of the promising use of nanoparticles (NPs) in biomedical applications, several toxic effects have increased the concerns about the safety of these nanomaterials. Although the pathways for NPs toxicity are diverse and dependent upon many parameters such as the nature of the nanoparticle and the biochemical environment, numerous studies have provided evidence that direct contact between NPs and biomolecules or cell membranes leads to cell inactivation or damage and may be a primary mechanism for cytotoxicity. In such a context, this work focused on developing a fast and accurate method to characterize the interaction between NPs, proteins and lipidic membranes by surface plasmon resonance imaging (SPRi) technique. The interaction of gold NPs with mimetic membranes was evaluated by monitoring the variation of reflectivity after several consecutive gold NPs injections on the lipidic membranes prepared on the SPRi biochip. The interaction on the membranes with varied lipidic composition was compared regarding the total surface concentration density of gold NPs adsorbed on them. Then, the interaction of gold and silver NPs with blood proteins was analyzed regarding their kinetic profile of the association/dissociation and dissociation constants (k(off)). The surface concentration density on the membrane composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol (POPC/cholesterol) was 2.5 times higher than the value found after the injections of gold NPs on POPC only or with dimethyldioctadecylammonium (POPC/DDAB). Regarding the proteins, gold NPs showed preferential binding to fibrinogen resulting in a value of the variation of reflectivity that was 8 times higher than the value found for the other proteins. Differently, silver NPs showed similar interaction on all the tested proteins but with a variation of reflectivity on immunoglobulin G (IgG) 2 times higher than the value found for the other tested proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据