4.7 Review

The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children

期刊

出版社

MDPI
DOI: 10.3390/ijms232315413

关键词

obesity; physical activity; hormones; children; adipose tissue

资金

  1. Fundacion Ramon Areces, Madrid, Spain

向作者/读者索取更多资源

This article reviews the molecular and hormonal control of obesity in pediatric populations and the impact of physical activity on obese or overweight children. The aim is to explore the regulating factors associated with pediatric obesity and propose the use of omics analyses and machine learning techniques to improve treatment decisions.
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据