4.7 Article

Androgen Deprivation Freezes Hormone-Sensitive Prostate Cancer Cells in a Reversible, Genetically Unstable Quasi-Apoptotic State, Bursting into Full Apoptosis upon Poly(ADP-ribose) Polymerase Inhibition

期刊

出版社

MDPI
DOI: 10.3390/ijms24032040

关键词

hormone-sensitive prostate cancer; androgen deprivation therapy; apoptosis; PARP; quasi-apoptotic state

向作者/读者索取更多资源

Androgen deprivation therapy (ADT) induces a metastable quasi-apoptotic state (QUAPS) in mHSPC cells, characterized by partial mitochondrial permeabilization and moderate induction of caspase-dependent dsDNA breaks, promoting genetic instability. QUAPS is stabilized by PARP and can be reverted upon androgen restoration. The cells re-acquire resistance to PARP inhibitors and exhibit an increased micronuclei frequency, suggesting a potential pathway for the progression of mHSPC to CRPC.
Androgen deprivation therapy (ADT) is a powerful treatment for metastatic hormone-sensitive prostate cancer (mHSPC) patients, but eventually and inevitably, cancer relapses, progressing to the fatal castration-resistant (CR)PC stage. Progression implies the emergence of cells proliferating in the absence of androgen through still elusive mechanisms. We show here for the first time that ADT induces LNCaP mHSPC cells to collectively enter a metastable quasi-apoptotic state (QUAPS) consisting of partial mitochondrial permeabilization, limited BAX and caspase activation, and moderate induction of caspase-dependent dsDNA breaks; despite this, cells maintain full viability. QUAPS is destabilized by poly(ADP)-polymerase inhibition (PARPi), breaking off toward overt intrinsic apoptosis and culture extinction. Instead, QUAPS is rapidly and efficiently reverted upon androgen restoration, with mitochondria rapidly recovering integrity and cells collectively resuming normal proliferation. Notably, replication restarts before DNA repair is completed, and implies an increased micronuclei frequency, indicating that ADT promotes genetic instability. The recovered cells re-acquire insensitivity to PARPi (as untreated LNCaP), pointing to specific, context-dependent vulnerability of mHSPC cells to PARPi during ADT. Summarizing, QUAPS is an unstable, pro-mutagenic state developing as a pro-survival pathway stabilized by PARP, and constitutes a novel viewpoint explaining how ADT-treated mHSPC may progress to CRPC, indicating possible preventive countermeasures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据