4.7 Article

Phylogenetic, Structural and Functional Evolution of the LHC Gene Family in Plant Species

期刊

出版社

MDPI
DOI: 10.3390/ijms24010488

关键词

divergence; evolution; expansion; phylogenetic analysis; collinearity analysis; whole-genome duplication

向作者/读者索取更多资源

In this study, we identified and analyzed 1222 LHC genes in photosynthetic organisms, divided into four subfamilies. The selection pressure on PsbS and FCII families was higher than others. There were significant differences in the transcriptional expression patterns of LHC genes in different tissues and under abiotic stress conditions, with high expression in mature leaves. Based on the expression pattern and copy number, different evolutionary trajectories in the LHC gene family were proposed.
Light-harvesting chlorophyll a/b-binding (LHC) superfamily proteins play a vital role in photosynthesis. Although the physiological and biochemical functions of LHC genes have been well-characterized, the structural evolution and functional differentiation of the products need to be further studied. In this paper, we report the genome-wide identification and phylogenetic analysis of LHC genes in photosynthetic organisms. A total of 1222 non-redundant members of the LHC family were identified from 42 species. According to the phylogenetic clustering of their homologues with Arabidopsis thaliana, they can be divided into four subfamilies. In the subsequent evolution of land plants, a whole-genome replication (WGD) event was the driving force for the evolution and expansion of the LHC superfamily, with its copy numbers rapidly increasing in angiosperms. The selection pressure of photosystem II sub-unit S (PsbS) and ferrochelatase (FCII) families were higher than other subfamilies. In addition, the transcriptional expression profiles of LHC gene family members in different tissues and their expression patterns under exogenous abiotic stress conditions significantly differed, and the LHC genes are highly expressed in mature leaves, which is consistent with the conclusion that LHC is mainly involved in the capture and transmission of light energy in photosynthesis. According to the expression pattern and copy number of LHC genes in land plants, we propose different evolutionary trajectories in this gene family. This study provides a basis for understanding the molecular evolutionary characteristics and evolution patterns of plant LHCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据