4.7 Article

Computational Analysis of SAM Analogs as Methyltransferase Inhibitors of nsp16/nsp10 Complex from SARS-CoV-2

期刊

出版社

MDPI
DOI: 10.3390/ijms232213972

关键词

SARS-CoV-2; nsp16; nsp10; SAM analog; inhibition mechanism; MD simulations; binding free energy

资金

  1. National Council for Scientific and Technological Development [88887.712684/2022-00, 88887.598552/2021-00]
  2. CAPES [2013/08293-7]
  3. FAPESP

向作者/读者索取更多资源

This study evaluates inhibitors of MTases enzymes for SARS-CoV-2 and provides structural and energetic analysis using computational modeling techniques. The most potent inhibitor shows lower binding free energy and higher potency than known inhibitors. Additionally, analysis of cell permeability suggests that the inhibitors suffer from poor cell permeability.
Methyltransferases (MTases) enzymes, responsible for RNA capping into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are emerging important targets for the design of new anti-SARS-CoV-2 agents. Here, analogs of S-adenosylmethionine (SAM), obtained from the bioisosteric substitution of the sulfonium and amino acid groups, were evaluated by rigorous computational modeling techniques such as molecular dynamics (MD) simulations followed by relative binding free analysis against nsp16/nsp10 complex from SARS-CoV-2. The most potent inhibitor (2a) shows the lowest binding free energy (-58.75 Kcal/mol) and more potency than Sinefungin (SFG) (-39.8 Kcal/mol), a pan-MTase inhibitor, which agrees with experimental observations. Besides, our results suggest that the total binding free energy of each evaluated SAM analog is driven by van der Waals interactions which can explain their poor cell permeability, as observed in experimental essays. Overall, we provide a structural and energetic analysis for the inhibition of the nsp16/nsp10 complex involving the evaluated SAM analogs as potential inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据