4.7 Article

Genome-Wide Identification and Posttranscriptional Regulation Analyses Elucidate Roles of Key Argonautes and Their miRNA Triggers in Regulating Complex Yield Traits in Rapeseed

期刊

出版社

MDPI
DOI: 10.3390/ijms24032543

关键词

miRNA-Argonautes; phylogenetic and expression analysis; posttranscriptional regulation; Brassica napus; yield-related traits

向作者/读者索取更多资源

In this study, the Argonaute gene family in Brassica napus was comprehensively analyzed, and a total of 10 AtAGOs, 13 BolAGOs, 11 BraAGOs, and 24 BnaAGOs were identified. Expression analysis revealed that the miR168a-AGO1s module negatively regulates yield traits, while the miR403-AGO2s module positively influences yield. This study provides a theoretical basis for breeding high-yielding rapeseed varieties through the manipulation of miRNA-AGOs modules.
Argonautes (AGOs) interact with microRNAs (miRNAs) to form the RNA-induced silencing complex (RISC), which can posttranscriptionally regulate the expression of targeted genes. To date, however, the AGOs and their miRNA triggers remain elusive in rapeseed (Brassica napus). Here, we systematically performed a phylogenetic analysis and examined the collinear relationships of the AGOs among four Brassicaceae species. Their physicochemical properties, gene structures, and expression patterns among 81 tissues from multiple materials and developmental stages were further analyzed. Additionally, their posttranscriptional regulation was analyzed using psRNATarget prediction, miRNA-/mRNA-Seq analyses, and a qRT-PCR verification. We finally identified 10 AtAGOs, 13 BolAGOs, 11 BraAGOs, and 24 BnaAGOs. An expression analysis of the BnaAGOs in the B. napus cultivar ZS11, as well as genotypes with extreme phenotypes in various yield-related traits, revealed the conservation and diversity of these genes. Furthermore, we speculated the posttranscriptional regulation of the B. napus miR168a-AGO1s and miR403-AGO2s modules. Combining miRNA-Seq and mRNA-Seq analyses, we found that the B. napus miR168a-AGO1s module may play an essential role in negatively regulating yield traits, whereas the miR403-AGO2s module positively impacts yield. This is the first attempt to comprehensively analyze the AGOs and their miRNA triggers in B. napus and provides a theoretical basis for breeding high-yielding varieties through the manipulation of the miRNA-AGOs modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据