4.7 Article

An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 48, 期 8, 页码 2920-2928

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2022.10.144

关键词

Thermal plasma; Carbon black; Hydrogen; Methane pyrolysis; Methane decomposition

向作者/读者索取更多资源

A novel thermal plasma process for economically viable commercial-scale hydrogen and carbon black production is introduced in detail. The selectivity and yield of solid carbon and gaseous hydrogen are emphasized. Lab scale reactor data demonstrates the technical viability, with methane feedstock conversions of >99%, hydrogen selectivity of >95%, solid recovery of >90%, and the ability to produce carbon particles of varying crystallinity. The energy intensity of this process is currently around 25 kWh per kg of H2 produced, significantly lower than water electrolysis.
A novel thermal plasma process was developed, which enables economically viable commercial-scale hydrogen and carbon black production. Key aspects of this process are detailed in this work. Selectivity and yield of both solid, high-value carbon and gaseous hydrogen are given particular attention. For the first time, technical viability is demon-strated through lab scale reactor data which indicate methane feedstock conversions of >99%, hydrogen selectivity of >95%, solid recovery of >90%, and the ability to produce carbon particles of varying crystallinity having the potential to replace traditional furnace carbon black. The energy intensity of this process was established based on real-time operation data from the first commercial plant utilizing this process. In its current stage, this technology uses around 25 kWh per kg of H2 produced, much less than water electrolysis which requires approximately 60 kWh per kg of H2 produced. This energy in-tensity is expected to be reduced to 18-20 kWh per kg of hydrogen with improved heat recovery and energy optimization.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据