4.6 Article

Bi-objective optimization of post-combustion CO2 capture using methyldiethanolamine

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2022.103815

关键词

CO2 capture; Chemical absorption; Methyldiethanolamine; Multi-objective optimization; Machine learning; NSGA-II

向作者/读者索取更多资源

This study presents a bi-objective optimization of the post-combustion CO2 absorption process using machine-learning and genetic algorithm. The optimized structure and operation conditions were obtained, providing important guidance for the practical use of the process.
Process simulation and analyzes based on multiple evaluation indexes are crucial for accelerating the practical use of the post-combustion CO2 capture process. This study presents a bi-objective optimization of the post -combustion CO2 absorption process using methyldiethanolamine (MDEA) via machine-learning and genetic al-gorithm to evaluate CO2 emissions from the absorption process using life cycle assessment and cost from operating and capital expenditures. An initial dataset was generated by changing eight design variables, and machine-learning models were built using random forest classifier and Gaussian process regression. Pareto so-lutions were predicted using a genetic algorithm (NSGA-II) with the constraints of purity, recovery, and tem-perature, and were verified via process simulation. Verified data were added to the dataset, and model building, prediction, and verification were repeated. Eventually, 56 Pareto solutions were obtained after 11 iterations. In the final Pareto solutions, CO2 emissions increased from 0.56 to 0.6 t-CO2/t-CO2 with a decrease in cost from 74 to 66 USD/t-CO2. The trends and composition of each objective variable were examined, and the optimal structure of the equipment and operation conditions was clarified. The approach of bi-objective optimization in this study is promising for evaluating the CO2 capture process and individual processes of carbon capture, uti-lization, and storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据