4.7 Article

Enhancing the solubility and antimicrobial activity of cellulose through esterification modification using amino acid hydrochlorides

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2022.12.068

关键词

Cellulose; Amino acid hydrochloride; Esterification; Solubility; Antibacterial activity

向作者/读者索取更多资源

Most amino acid molecules have good water solubility and functional groups, making them a promising agent for modifying cellulose. However, the self-condensation of amino acids and low reaction efficiency are common during esterification. In this study, amino acid hydrochloride ([AA]Cl) was used to synthesize cellulose amino acid ester (CAE), showing a faster reaction rate compared to raw amino acids. CAE with a degree of substitution of 0.412-0.516 was easily synthesized under specific conditions. The synthesized CAE showed good solubility in a 7 wt% NaOH solution and exhibited shear-thinning behavior and a high gel temperature. Additionally, the CAE exhibited significant antibacterial activity, with a bacteriostatic reduction rate against E. coli of 99.5%.
Most amino acid molecules have good water solubility and are rich in functional groups, which makes them a promising derivatizing agent for cellulose. However, self-condensation of amino acids and low reaction efficiency always happen during esterification. Here, amino acid hydrochloride ([AA]Cl) is selected as raw material to synthesize cellulose amino acid ester (CAE). Based on TG-MS coupling technology, a significantly faster reaction rate of [AA]Cl compared to raw amino acid can be observed visually. CAE with the degree of substitution 0.412-0.516 is facilely synthesized under 130-170 degrees C for 10-50 min. Moreover, the effects of amounts of [AA]Cl agent, temperature, and time on the esterification are studied. The CAE can be well dissolved in 7 wt% NaOH aq., resulting in a 7.5 wt% dope. The rheological test of the dope demonstrated a shear-thinning behavior for Newtonian-like fluid, and a high gel temperature (41.7 degrees C). Further, the synthesized products show distinct antibacterial activity and the bacteriostatic reduction rate against E. coli can reach 99.5 %.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据