4.7 Article

Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2022.11.201

关键词

Modified chitosan; Flexible electrode; Ultrahigh energy density

向作者/读者索取更多资源

In this study, a hybrid hydrogel composed of bio-based chitosan and holey graphene oxide was prepared by microwave-assisted hydrothermal method to address the issues of low energy density and poor conductivity in conventional electrode materials for supercapacitors. The hydrogel exhibited high conductivity and flexibility, and when used as an additive-free electrode, it showed promising performance with a high specific capacitance of 377 F/g at 5 A/g. Additionally, the hydrogel composite when used in a flexible solid-state supercapacitor achieved a specific capacitance of 210 F/g at 0.5 A/g, with an ultrahigh energy density of 31 Wh/kg at the power density of 150 W/kg. These findings suggest the potential of the hydrogel composite in applications such as signal sensors and portable energy storage.
To overcome the low energy density and poor conductivity of conventional electrode materials for building supercapacitor, herein, a hybrid hydrogel prepared from compositing bio-based chitosan with holey graphene oxide by microwave-assisted hydrothermal is proposed. This binary hydrogel is endowed with heteroatomic functional groups and conductive porous network by chemical pretreatments, where amides and carboxyl groups are introduced during the acylation modification of chitosan to enable it soluble in water for sufficient reaction, while the oxidation etching for graphene oxide in the defect area by H2O2 facilitates in-plane nanopores network to provide abundant active surface and short ion diffusion pathway. Benefited from the high conductivity and flexibility, this hydrogel present promising performance when used as additive-free electrode in a three-electrode, with a high specific capacitance of 377 F/g at 5 A/g. The rich nitrogen and oxygen groups on sur-face of the hydrogel contribute to high capacitance directly, while the in-plane nanopores and hierarchically porous network benefit to promote their wettability, accelerate the charge transfer and enhance their charge storage ability. When the hydrogel composite is adopted into a flexible solid-state supercapacitor employing lignin hydrogel electrolyte, it unfolds a specific capacitance of 210 F/g at 0.5 A/g, with an ultrahigh energy density of 31 Wh/kg at the power density of 150 W/kg. The solid-state supercapacitor exhibits promising po-tential in applications such as signal sensor and portable energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据