4.7 Article

Interfacial distribution and compatibilization of imidazolium functionalized CNTs in poly(lactic acid)/polycaprolactone composites with excellent EMI shielding and mechanical properties

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2022.11.304

关键词

Poly(lactic acid); EMI shielding properties; Mechanical properties

向作者/读者索取更多资源

Imidazolium-functionalized polyurethane (IPU) functionalized multi-walled carbon nanotubes (CNTs) were used to control interfacial distribution and compatibilization of CNTs, and enhance electromagnetic interference (EMI) shielding and mechanical properties of poly(lactic acid)/polycaprolactone (PLA/PCL) based composites. The EMI shielding properties for the PLA/PCL/8CNT/0.8IPU composites have been evidently increased to 35.6 dB. Meanwhile, the elongation at break and the notched impact strength of the PLA/PCL/8CNT/0.8IPU composite reached 307.8 % and 51.3 kJ/m2, respectively, which are increased by 27 and 53% of PLA/PCL/8CNT due to the compatibilization effect of IPU and the distribution of CNTs.
Imidazolium-functionalized polyurethane (IPU) functionalized multi-walled carbon nanotubes (CNTs) was used to control interfacial distribution and compatibilization of CNTs, and enhance electromagnetic interference (EMI) shielding and mechanical properties of poly(lactic acid)/polycaprolactone (PLA/PCL) based composites. IPU facilitated the uniformly dispersion of CNTs and induced the selectively location of CNTs at the interface and PCL phase, which is beneficial to build more effective three-dimensional network structure at the co-continuous interphase. The EMI shielding properties for the PLA/PCL/8CNT/0.8IPU composites have been evidently increased to 35.6 dB. Meanwhile, the elongation at break and the notched impact strength of the PLA/PCL/ 8CNT/0.8IPU composite reached 307.8 % and 51.3 kJ/m2, respectively, which are increased by 27 and 53 % of PLA/PCL/8CNT because of the compatibilization effect of IPU and the distribution of CNTs. This work presented a promising prospect of polymer-based composites with satisfactory EMI shielding and mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据