4.5 Article

Distributed adaptive neural network fixed-time leader-follower attitude consensus control for multiple rigid spacecraft

出版社

WILEY
DOI: 10.1002/acs.3537

关键词

adaptive neural control; attitude consensus; distributed observer; fixed-time; inertia uncertainty

向作者/读者索取更多资源

This paper proposes an adaptive neural network-based distributed protocol for fixed-time attitude consensus control of a group of rigid spacecraft in the presence of inertia uncertainties and external disturbances.
In this paper, the problem of fixed-time attitude consensus control is addressed for a group of rigid spacecraft in the presence of inertia uncertainties and external disturbances. By applying the adaptive technique and neural network approximation technique to handle the disturbances and uncertainties, an adaptive neural network-based distributed protocol is proposed to achieve attitude consensus control for multiple rigid spacecraft. The proposed distributed attitude consensus protocol is composed of a group of distributed fixed-time observers for followers to estimate the leader's information and an adaptive neural network-based fixed-time sliding mode control law to realize attitude tracking control. Rigorous proofs are provided to demonstrate that the estimation errors of the proposed observers are convergent in a fixed time. Further, it is also proven that attitude tracking errors reach some adjustable regions in a fixed time under the proposed attitude consensus protocol. Numerical simulations are conducted to illustrate the performance of the proposed distributed attitude consensus protocol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据