4.7 Article

Temperature-dependent impact of antiphase boundaries on properties of Fe3Al

期刊

INTERMETALLICS
卷 151, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2022.107746

关键词

Fe3Al; Phonons; Antiphase boundaries; Quantum-mechanical calculations; Elasticity; 43.35.Gk; 61.72.Nn; 62.20.x; 62.20.Dc; 31.15.A; 74A50; 74B05; 4A15; 74J10

资金

  1. Czech Science Foundation [20-08130S]
  2. Ministry of Education, Youth and Sports of the Czech Republic [90140, LM2018140]

向作者/读者索取更多资源

The study shows that antiphase boundaries (APBs) strongly influence the thermal vibrations and phonon gap width of Fe3Al. Fe3Al with APBs exhibits higher volumetric thermal expansion and lower free energy compared to defect-free Fe3Al. The presence of APBs also reduces the bulk modulus, resulting in elastic softening of Fe3Al.
We have performed a quantum-mechanical study of the influence of antiphase boundaries (APBs) on the temperature dependence of selected materials properties of Fe3Al. We show that the studied APBs very strongly affect thermal vibrations of Fe3Al and reduce the width of the band gap in phonon frequencies. Our results also show that the Fe3Al with APBs exhibits higher volumetric thermal expansion than the defect-free Fe3Al. The computed free energy of APBs is found to be strongly temperature-dependent. It is lower than the static-lattice temperature-independent APB energy and the reduction is enhanced by increasing temperature (to 76% at T = 700 K). We have also addressed the discrepancy between the experimental bulk modulus and previous theoretical results obtained for the defect-free Fe3Al. Due to the presence of APBs, the bulk modulus is reduced from the value of 173 GPa, that corresponds to the defect-free Fe3Al, to 153 GPa, i.e. very close to the experimental value of 147 GPa (at T = 0 K). Our study illustrates the impact of extended defects on the elastic properties of Fe3Al and indicates that the studied APBs elastically soften Fe3Al.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据