4.7 Article

Metal-Ligand Cooperativity Promotes Reversible Capture of Dilute CO2 as a Zn(II)-Methylcarbonate

期刊

INORGANIC CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.2c03868

关键词

-

向作者/读者索取更多资源

A series of thiosemicarbazonato-hydrazinatopyridine metal complexes were evaluated as CO2 capture agents, and the Zn(II) complexes showed effective CO2 capture from dilute sources with high efficiency. Ligand substitution and metal ion variation were found to affect the CO2 capture affinity, mainly associated with ligand basicity and metal ion Lewis acidity. The complexes demonstrated reversible CO2 capture and the equilibrium constants varied with different metals and ligands.
In this study, a series of thiosemicarbazonato-hydrazinatopyridine metal complexes were evaluated as CO2 capture agents. The complexes incorporate a non-coordinating, basic hydrazinatopyridine nitrogen in close proximity to a Lewis acidic metal ion allowing for metal-ligand cooperativity. The coordination of various metal ions with (diacetyl-2-(4-methyl-thiosemicarbazone)3-(2-hydrazinopyridine) (H2L1) yielded ML1 (M = Ni(II), Pd(II)), ML1(CH3OH) (M = Cu(II), Zn(II)), and [ML1(PPh3)2]BF4 (M = Co(III)) complexes. The ML1(CH3OH) complexes reversibly capture CO2 with equilibrium constants of 88 +/- 9 and 6900 +/- 180 for Cu(II) and Zn(II), respectively. Ligand effects were evaluated with Zn(II) through variation of the 4-methyl-thiosemicarbazone with 4-ethyl (H2L2), 4-phenethyl (H2L3), and 4-benzyl (H2L4) derivatives. The equilibrium constant for CO2 capture increased to 11,700 +/- 300, 15,000 +/- 400, and 35,000 +/- 200 for ZnL2(MeOH), ZnL3(MeOH), and ZnL4(MeOH), respectively. Quantification of ligand basicity and metal ion Lewis acidity shows that changes in CO2 capture affinity are largely associated with ligand basicity upon substitution of Cu(II) with Zn(II), while variation of the thiosemicarbazone ligand enhances CO2 affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO2 from dilute sources with up to 90%, 86%, and 65% CO2 capture efficiency from 400, 1000, and 2500 ppm CO2 streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据