4.6 Article

Spatial-spectral classification of hyperspectral remote sensing images using 3D CNN based LeNet-5 architecture

期刊

INFRARED PHYSICS & TECHNOLOGY
卷 127, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.infrared.2022.104470

关键词

Remote Sensing; Hyperspectral image classification; LeNet-5 architecture; 3D convolutional neural network; Principal component analysis

向作者/读者索取更多资源

Hyperspectral remote sensing image analysis is widely used in remote sensing applications, and this study proposed a 3D CNN-based LeNet-5 method for HRSI classification, utilizing PCA for spectral band extraction and achieving 100% overall accuracy in experimental studies.
Hyperspectral remote sensing image (HRSI) analysis are commonly used in a wide variety of remote sensing applications such as land cover analysis, military surveillance, object detection and precision agriculture. Deep learning is seen as an effective method to improve HRSI classification. In particular, convolutional neural net-works (CNNs) are increasingly used in this field. The high dimensionality of the HRSIs increases the computa-tional complexity. Thus, most of studies apply dimension reduction as preprocessing. Another problem in HRSI classification is that spatial-spectral features must be considered in order to obtain accurate results. Because, HRSI classification results are highly dependent on spatiospectral information. The aim of this paper is to build a 3D CNN-based LeNet-5 method for HRSI classification. Principal component analysis (PCA) is used as the pre-processing step for optimum spectral band extraction. 3D CNN is used to simultaneously extract spatial -spectral features in HRSIs. LeNet-5 architecture has a simple and straightforward architecture. At the same time, the number of trainable parameters is very low. With the use of the LeNet-5 architecture, the number of trainable parameters of the proposed method is considerably reduced. This is one of the most important features that distinguish the proposed method from other deep learning methods. The proposed method is tested with Indian pines, Pavia University and Salinas datasets. As a result of experimental studies, 100% overall accuracy result is obtained in all datasets. The proposed 3DLeNet method is compared against various state-of-the-art CNN based methods. From the experimental results, it is seen that our 3DLeNet method performs more accurate result. It has also been found that the proposed 3DLeNet method shows a satisfactory result with less computational complexity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据