4.7 Article

Visual tracking in complex scenes: A location fusion mechanism based on the combination of multiple visual cognition flows

期刊

INFORMATION FUSION
卷 96, 期 -, 页码 281-296

出版社

ELSEVIER
DOI: 10.1016/j.inffus.2023.02.005

关键词

Visual monitoring; Multiple visual cognition; Location fusion; Feature template memory; Complex scenes

向作者/读者索取更多资源

Deep learning has transformed computer vision and is widely used for monitoring in various visual scenes. However, traditional machine-learning methods still have certain advantages in terms of complexity and explainability. Traditional visual tracking approaches, particularly those using correlation filtering, have become popular for understanding complex visual scenes, but they may not fully capture the changing target appearances in dynamic visual scenes, leading to inaccurate target locations.
In recent years, deep learning has revolutionized computer vision and has been widely used for monitoring in diverse visual scenes. However, in terms of some aspects such as complexity and explainability, deep learning is not always preferable over traditional machine-learning methods. Traditional visual tracking approaches have shown certain advantages in terms of data collection efficiency, computing requirements, and power consumption and are generally easier to understand and explain than deep neural networks. At present, traditional feature-based techniques relying on correlation filtering (CF) have become common for understanding complex visual scenes. However, current CF algorithms use a single feature to describe the information of the target and locate it accordingly. They cannot fully express changeable target appearances in a complex scene, which can easily lead to inaccurate target locations in time-varying visual scenes. Moreover, owing to the complexity of surveillance scenes, monitoring algorithms can lose their target. The original template update strategy uses each frame with a fixed interval length as a new template, which may lead to unreliable feature extraction and low tracking accuracy. To overcome these issues, in this work, we introduce an original location fusion mechanism based on multiple visual cognition processing streams to achieve real-time and efficient visual monitoring in complex scenes. First, we propose a process for extracting multiple forms of visual cognitive information, and it is periodically used to extract multiple feature information flows of a target of interest. Subsequently, a cognitive information fusion process is employed to fuse the positioning results of different visual cognitive information flows to achieve high-quality visual monitoring and positioning. Finally, a novel feature template memory storage and retrieval strategy is adopted. When the location result is unreliable, the target is retrieved from memory to ensure robust and accurate tracking. In addition, we provide an extensive set of performance results showing that our proposed approach exhibits more robust performance at a lower computational cost compared with 36 state-of-the-art algorithms for visual tracking in complex scenes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据