4.6 Review

An Overview of the Oil plus Brine Two-Phase System in the Presence of Carbon Dioxide, Methane, and Their Mixture

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 61, 期 49, 页码 17766-17782

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.2c03089

关键词

-

资金

  1. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR)
  2. [OSR-2019-CRG8-4074]

向作者/读者索取更多资源

This article provides an overview of molecular simulation studies on the oil+brine two-phase system with CO2, CH4, and their mixture under geological conditions. The simulation results agree well with experimental and theoretical predictions, revealing the variations in interfacial tension, solubility, and surface excess under different conditions.
An overview of the molecular simulation studies of the oil+brine two-phase system in the presence of CO2, CH4, and their mixture at geological conditions is presented. The simulation results agreed well with the experimental results and the density gradient theory predictions on the basis of the cubic-plus-association equation of state (CPA EoS) (withDebye-Huckel electrostatic term) and the perturbed chain statistical associating fluid theory (PC-SAFT) EoS. The interfacial tension (IFT) of the alkane+H2O system showed almost a linear increase with an increasing number of carbon atoms in the alkane molecule. These IFTs are approximately equal for linear, branched, and cyclic alkanes. Here, the negative surface excess of the alkanes might explain the increase in the IFTs with an increase in the pressure. The surface excesses of the alkanes increased with decreasing temperature. This may explain the decrease of the slopes in the IFT versus pressure plot with a decrease in the temperature. The IFT behavior of the alkane+water+CH4/CO2 system was found to be similar to that observed for the alkane+water system. The addition of CO2 had a more significant influence on the IFT than the addition of CH4. Here, CH4 and CO2 exhibited a positive surface excess. The negative surface excess of the salt ions probably explains the increase in the IFTs of the alkane+brine system with increasing salt content. The solubilities of CH4 and/or CO2 in the H2O-rich phase of the alkane+brine+CH4/CO2 system increased with decreasing salt content (salting-out effect). The IFT of the aromatic hydrocarbon+H2O system is much lower than that of the alkane+H2O system. The surface excess followed the order o-xylene > ethylbenzene > toluene > benzene for the aromatic hydrocarbon+H2O system. This trend has a direct correlation with the aromatic-aromatic interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据