4.7 Article

Dynamic Online Trajectory Planning for a UAV-Enabled Data Collection System

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 71, 期 12, 页码 13332-13343

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2022.3200458

关键词

Unmanned aerial vehicle (UAV); online trajectory planning; deep reinforcement learning (DRL)

资金

  1. Sichuan Science and Technology Program [2021YFG0127]

向作者/读者索取更多资源

This article proposes a two-level deep reinforcement learning framework to solve the trajectory planning problem in UAV-enabled wireless sensor networks.
Due to the maneuverability and flexibility of unmanned aerial vehicles (UAVs), the UAV-enabled data collection systems for wireless sensor networks (WSN) have received widespread attention. However, the state-of-the-art UAV trajectory designs mainly focus on static environments, which are not applicable in the practical scenarios considered in this work, e.g., mobile nodes, decommissioning of existing nodes, and new emergency nodes. This article proposes a two-level deep reinforcement learning (DRL) framework to solve this challenge. The first-level deep neural network (DNN) is applied to model the dynamic changing environment. In the second level, we employ a deep Q-learning network to plan a trajectory online according to the environment features from the first level DNN. Besides, online trajectory planning is performed by a low-power UAV edge computing platform. To enable online planning on the power-constraint UAV edge-computing platform, all networks adopt a lightweight low-complexity optimization design. According to simulation results, the proposed system achieves higher data acquisition success rates when compared to existing state-of-the-art methods. We also perform field tests on the proposed UAV edge computing platform, which also demonstrates high data acquisition performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据