4.7 Article

Effect of Increasing Assistance From a Powered Prosthesis on Weight-Bearing Symmetry, Effort, and Speed During Stand-Up in Individuals With Above-Knee Amputation

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2022.3214806

关键词

Prosthetics; Knee; Torque; Electromyography; Legged locomotion; Force; Band-pass filters; Artificial limbs; prosthetic limbs; rehabilitation robotics; sit-to-stand; stand-up; wearable robotics

向作者/读者索取更多资源

Using a powered prosthesis can improve symmetry, speed, and effort for above-knee amputees, potentially enhancing quality of life.
After above-knee amputation, the missing biological knee and ankle are commonly replaced with a passive prosthesis, which cannot provide net-positive energy to assist the user. During activities such as sit-to-stand, above-knee amputees must compensate for this lack of power using their upper body, intact limb, and residual limb, resulting in slower, less symmetric, and higher effort movements. Previous studies have shown that powered prostheses can improve symmetry and speed by providing positive assistive power. However, we still lack a systematic investigation of the effect of powered prosthesis assistance. Without this knowledge, researchers and clinicians have no framework for tuning powered prostheses to optimally assist users. Here we show that varying the assistive knee torque significantly affected weight-bearing symmetry, effort, and speed during the stand-up movement in eight above-knee amputees. Specifically, we observed improvements in the index of asymmetry of the vertical ground reaction force at the point approximating maximum vertical center of mass acceleration, the integral of the intact vastus medialis activation measured using electromyography, and the stand-up duration compared to the passive prosthesis. We saw significant improvements in all three metrics when subjects used the powered prosthesis compared to the passive prosthesis. We saw improvements in all three metrics with increasing assistive torque levels commanded by the powered prosthesis. We also observed increased weight-bearing asymmetry at the end of movement, and increased kinematic asymmetry with increasing assistance from the powered prosthesis. These results show that powered prostheses can improve functional mobility, potentially increasing quality of life for millions of people living with above-knee amputations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据