4.7 Article

Enhanced Glutathione Peroxidase Activity of Water-Soluble and Polyethylene Glycol-Supported Selenides, Related Spirodioxyselenuranes, and Pincer Selenuranes

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 81, 期 17, 页码 7884-7897

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.6b01593

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada [RGPIN-2014-06670]
  2. Sound Pharmaceuticals Inc.
  3. NSERC
  4. Alberta Innovates - Technology Futures
  5. Alberta Innovates - Health Solutions
  6. Trinity College Dublin (Ireland)
  7. Universidad de Navarra (Spain)
  8. Asociacion de Amigos de la Universidad de Navarra

向作者/读者索取更多资源

Diaryl selenides containing o-hydroxymethylene substituents function as peroxide-destroying mimetics of the antioxidant selenoenzyme glutathione peroxidase (GPx), via oxidation to the corresponding spirodioxyselenuranes with hydrogen peroxide and subsequent reduction back to the original selenides with glutathione. Parent selenides with 3-hydroxypropyl or 2,3-dihydroxypropyl groups produced the novel compounds 10 and 11, respectively, with greatly improved aqueous solubility and catalytic activity. The phenolic derivative 28 displayed similarly ameliorated properties and also modest radical-inhibiting antioxidant activity, as evidenced by an assay based on phenolic hydrogen atom transfer to the stable free radical DPPH. In contrast, several selenides that afford pincer selenuranes (e.g., 20 and 21) instead of spiroselenuranes upon oxidation showed inferior catalytic activity. Several selenide analogues were attached to polyethylene glycol (PEG) oligomers, as PEG substituents can improve water solubility and bioavailability, while retarding clearance. Again, the PEG derivatives afforded remarkable activity when oxidation generated spirodioxyselenuranes and diminished activity when pincer compounds were produced. Several such compounds proved to be ca. 10- to 100-fold catalytically superior to the diaryl selenides and their spirodioxyselenurane counterparts investigated previously. Finally, an NMR-based assay employing glutathione in D2O was designed to accommodate the faster reacting water-soluble mimetics and to more closely duplicate in vivo conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据