4.6 Article

Reconfigurable Hardware Design Approach for Economic Neural Network

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSII.2022.3191342

关键词

Artificial neural network; hardware neural network; image recognition; pattern recognition; FPGA implementation

向作者/读者索取更多资源

Hardware-based neural networks are gaining popularity due to their superior performance. This brief proposes an area-efficient implementation of an Artificial Neural Network (ANN) by reducing the number of layers through a novel use of hidden layers. The proposed design achieves high hardware utilization and cost reduction.
Hardware-based neural networks are becoming attractive because of their superior performance. One of the research challenges is to design such hardware using less area to minimize the cost of on-chip implementation. This brief proposes an area-efficient implementation of an Artificial Neural Network (ANN). The proposed method reduces the number of layers in the ANN by nearly half through a novel, dual use of some layers denoted as hidden layers. The hidden layers are non-traditional layers proposed in this brief. They are adaptable, and each such layer performs two separate functions through judicious use of different weights. Thus, each hidden or flexible layer does the work of two traditional ANN layers. The other type of layers used in the proposed design is the fixed layers that are used traditionally. The fixed layers are not flexible and serve the functionality of a single layer. The proposed design keeps the number of the fixed layers as low as possible. One or more fixed layers may still be needed for some applications besides the proposed flexible layers. The proposed method is implemented in Verilog HDL on Altera Arria 10 GX FPGA. Its area usage is only 41% of the state-of-the-art method, while its power consumption and speed overheads are small.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据