4.6 Article

Stimulus-Stimulus Transfer Based on Time-Frequency-Joint Representation in SSVEP-Based BCIs

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 70, 期 2, 页码 603-615

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2022.3198639

关键词

Calibration; Time-frequency analysis; Adaptation models; Transfer learning; Brain modeling; Electroencephalography; Visualization; Adaptive Fourier decomposition; brain-computer interface; multi-channel signal analysis; steady-state visual evoked potential; stimulus-stimulus transfer

向作者/读者索取更多资源

This study proposes a new perspective, the time-frequency-joint representation, which synchronizes SSVEP signals corresponding to different stimuli and emphasizes common components. By extracting and transferring these common components, it improves the performance of SSVEP recognition and reduces the calibration time, facilitating real-world applications of BCIs.
Objective: Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) require extensive and costly calibration to achieve high performance. Using transfer learning to re-use existing calibration data from old stimuli is a promising strategy, but finding commonalities in the SSVEP signals across different stimuli remains a challenge. Method: This study presents a new perspective, namely time-frequency-joint representation, in which SSVEP signals corresponding to different stimuli can be synchronized, and thus can emphasize common components. According to this time-frequency-joint representation, an adaptive decomposition technique based on the multi-channel adaptive Fourier decomposition (MAFD) is proposed to adaptively decompose SSVEP signals of different stimuli simultaneously. Then, common components can be identified and transferred across stimuli. Results: A simulation study on public SSVEP datasets demonstrates that the proposed stimulus-stimulus transfer method has the ability to extract and transfer these common components across stimuli. By using calibration data from eight source stimuli, the proposed stimulus-stimulus transfer method can generate SSVEP templates of other 32 target stimuli. It boosts the ITR of the stimulus-stimulus transfer based recognition method from 95.966 bits/min to 123.684 bits/min. Conclusion: By extracting and transfer common components across stimuli in the proposed time-frequency-joint representation, the proposed stimulus-stimulus transfer method produces good classification performance without requiring calibration data of target stimuli. Significance: This study provides a synchronization standpoint to analyze and model SSVEP signals. In addition, the proposed stimulus-stimulus method shortens the calibration time and thus improve comfort, which could facilitate real-world applications of SSVEP-based BCIs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据