4.6 Article

Basin-scale terrestrial water storage changes inferred from GRACE-based geopotential differences: a case study of the Yangtze River Basin, China

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 233, 期 2, 页码 1318-1338

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggac524

关键词

Hydrology; Inverse theory; Satellite gravity; Time-series analysis; Time variable gravity

向作者/读者索取更多资源

This paper discusses the impact of global perturbations on large-scale changes in groundwater storage using GRACE satellite data, and the results show that using temporal constraints can improve the consistency and accuracy of the results.
The Gravity Recovery and Climate Experiment (GRACE) mass concentration (mascon) solutions provide enhanced signal and spatial resolution of surface mass changes by using regularization techniques to reduce striping errors. To further improve the computational efficiency and capture the same benefits as GRACE mascon solutions, we presented an estimation of regional mascon solutions from GRACE-based geopotential differences by using spatio-temporal constraints with the unconstrained spherical harmonic solutions as a priori information. As a case study, the changes in the basin-scale terrestrial water storage (TWS) over the Yangtze River Basin (YRB) on 2 degrees x 2 degrees grids atmonthly intervals were estimated using GRACE-based geopotential differences, for the period of 2003 January-2013 December. The estimates were validated through official GRACE mascon solutions and in situ observations (i.e. time derivative of TWS change derived from precipitation, evapotranspiration and river run-off based on the water mass balance equation). The results demonstrate that the spatial and temporal patterns of TWS changes in the YRB inferred from geopotential differences adequately agree with the official mascon solutions; however, differences in amplitudes can be observed at the subbasin scale because of different regularizations applied in different solutions. In situ validations demonstrate that seasonal changes of mascon solutions and in situ observations agree well in the YRB; however, there are evident discrepancies in amplitudes over the subbasins owing to leakage biases in mascon solutions. For the entire YRB, the statistical evaluation and cross-wavelet transform demonstrate that our regional mascon solutions appear more consistent with in situ observations than the official mascon solutions. In addition, compared with the results estimated by spatial constraints, regional mascon solutions estimated by spatio-temporal constraints using observations from three consecutive months adjacent to the given month were improved. Our method provides an alternative option to use different regularization constraints, which is helpful for fine-tuning analysis of basin-scale TWS changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据