4.7 Article

Effects of emergent plants on soil carbon-fixation and denitrification processes in freshwater and brackish wetlands in a watershed in northern China

期刊

GEODERMA
卷 430, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2022.116311

关键词

Carbon-fixing bacteria; Community assembly; Denitrification; Rhizosphere; Root exudate; Wetland

向作者/读者索取更多资源

Plants can impact wetland ecosystem functions by influencing carbon and nitrogen cycles driven by microorganisms. However, the underlying mechanisms associated with CO2-fixation rate and denitrification rate in relation to wetland emergent plants remain unclear.
Plants could affect wetland ecosystem functions by influencing the carbon and nitrogen cycles driven by microorganisms. However, the underlying mechanisms associated with CO2-fixation rate (CFR) by autotrophic microbes and denitrification rate (DR) in relation to wetland emergent plants remain unclear. In this study, we conducted a field experiment to analyze the effects of emergent plants on the activities and community characteristics of CO2-fixing autotrophic bacteria and denitrifying bacteria in two types of wetlands in a lake basin: freshwater and brackish water. We found that the effects of emergent plants on CFR and DR differed between freshwater and brackish wetlands. Compared to freshwater wetland, brackish wetland exhibited higher CFR in the rhizosphere, probably due to the abundance of organic carbon conducive to facultative autotrophic bacteria. However, the lower rhizosphere DR in brackish wetland compared to that in freshwater wetland was due to the salt stress. In both freshwater and brackish wetlands, rhizosphere soil increased CFR and DR. The microbial communities associated with them were distinct from those in non-rhizosphere. Besides, neutral-based processes governed the assembly of these bacterial communities, while the rhizosphere showed more prominent dominance of niche-based processes than non-rhizosphere. Statistical analyses revealed that soil organic carbon and root exudates jointly drove the differences in the metabolic activities and composition of CO2-fixation-and denitrification-associated microbial communities between rhizosphere and non-rhizosphere. Overall, our findings suggest that the organic carbon released by plants through root exudates and plant litter is vital for promoting wetland soil carbon-fixation and denitrification and alleviating the detrimental effects of salinity on denitrification. This study provides valuable information for the conservation of CO2-fixation and nitrogen removal with suitable plant species in wetlands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据