4.7 Article

MP-PIC simulation on CO2 gasification of biomass in a pilot plant circulating fluidized bed gasifier

期刊

FUEL
卷 332, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.125992

关键词

Biomass gasification; CO 2 mitigation; Circulating fluidized bed; MP-PIC simulation

向作者/读者索取更多资源

This study numerically investigated the gasification of biomass with CO2 in a pilot plant circulating fluidized bed gasifier. The results showed that the CO2 percentage in the gasifying agent had insignificant influence on gas-solid distribution, but directly affected the char conversion and product gas compositions. The optimal CO2 percentage was found to be 60 wt%, resulting in the best thermochemical performance of the gasifier.
CO2 gasification of biomass offers a potential carbon-negative solution which combines biomass-to-energy conversion with carbon capture and utilization. In this study, biomass gasification with CO2 in a pilot plant circulating fluidized bed (CFB) gasifier is numerical investigated via a reactive multiphase particle-in-cell (MPPIC) model. Gas-solid hydrodynamics and thermochemical characteristics under different percentages of CO2 in gasifying agent (mixed with air from 0 to 100 wt%) are comprehensively analyzed, in terms of the biomass conversion, bed temperature, gas species distributions, chemical reaction rates, product gas yields, lower heating value of product gas (LHVgas) and cold gas efficiency (CGE). Simulation results indicate that the CO2 percentage in gasifying agent has insignificant influence on gas-solid distribution, while it directly affects the char conversion and product gas compositions. CO2 gasification favors the CO production, increases the CO/H2 ratio in product gas and mitigates the CO2 emission. However, increasing the CO2 percentage in gasifying agent results in a decreased char conversion rate and reduced bed temperature, which restricts the use of pure CO2 as gasifying agent. The optimal CO2 percentage occurs to 60 wt% where the gasifier has the best thermochemical performance, i.e., the highest compositions of combustible gases, the largest LHVgas and CGE. This research sheds light on biomass gasification with CO2 in a large-scale CFB facility, and would be helpful for the design and scale-up of this technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据