4.7 Article

Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission

期刊

FUEL
卷 333, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.126377

关键词

Acetone-butanol-ethanol; HCCI-DI; Diesel; Performance; Combustion; Emission

向作者/读者索取更多资源

The addition of acetone-butanol-ethanol (ABE) as a fuel can decrease CO2 and NOx emissions in an HCCI-DI engine, but has no significant effect on HC, CO, PM, and soot emissions. Furthermore, engine performance is improved with the addition of ABE.
Recent research has shown the potential of long-chain alcohols such as butanol for biofuel. However, the pro-duction quantity of butanol is very low and consumes high energy in its purification process. To solve such a problem, one of the effective approaches is to use acetone-butanol-ethanol (ABE) directly from the fermentation process. This study aims to investigate the effects of ABE-diesel blends in an HCCI-DI engine. It was found that although the presence of oxygen in ABE could theoretically promote complete combustion and eventually decrease HC and CO emissions, other significant factors may have played more dominant roles in affecting the HC and CO emissions. The experimental investigation on an HCCI-DI engine fuelled with ABE also did not reduce PM and Soot emissions. Furthermore, the peak in-cylinder combustion pressure decreased with fluctuating heat release rate. However, their p-V areas were larger than pure diesel fuel, which implied a higher indicated work produced per cycle. The addition of ABE also successfully decreased CO2 and NOx emissions. Moreover, improved engine performance in terms of higher BTE, lower BSFC and EGT were observed. All in all, considering its satisfying improved engine performance; ABE has the potential to become a promising alternative biofuel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据