4.7 Article

High pressure processing to control Salmonella in raw pet food without compromising the freshness appearance: The impact of acidulation and frozen storage

期刊

FOOD MICROBIOLOGY
卷 109, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fm.2022.104139

关键词

Raw pet food; High hydrostatic pressure; Mathematical modelling; Predictive microbiology; Salmonellosis

向作者/读者索取更多资源

This study evaluated the effect of high pressure processing (HPP) on the inactivation of Salmonella and the microbiological safety of raw pet food. It found that HPP effectively reduced Salmonella and endogenous microbiota levels in the food, and that frozen storage after HPP further enhanced the pathogen inactivation. The study also observed minimal impact of HPP on the color of the food. Therefore, HPP emerges as a relevant technology for ensuring the microbiological safety of raw pet food.
The trend of feeding dogs and cats with raw pet food claiming health benefits poses health concerns due to the occurrence of pathogenic bacteria. High pressure processing (HPP) allows the non-thermal inactivation of microorganisms, preserving the nutritional characteristics with minimal impact on organoleptic traits of food. The present study aimed to evaluate and model the effect of HPP application (450-750 MPa for 0-7 min) on the inactivation of Salmonella, endogenous microbiota and colour of raw pet food formulated with different concentrations of lactic acid (0-7.2 g/kg) as natural antimicrobial. Additionally, the effect of a subsequent frozen storage of pressurized product was assessed. Salmonella inactivation ranged between 1 and 9 log, depending on the combination of conditions. According to the polynomial model obtained, the effect of pressure was linear, while a quadratic term was also included for holding time (depicting the occurrence of a resistant tail at ca. 4-6 min). The effect of lactic acid was dependent on the pressure level, being most relevant for treatments below 600 MPa. Frozen storage after HPP prevented the pathogen recovery and caused a further Salmonella inactivation enhanced by lactic acid in most of the treatments. Endogenous microbial groups were significantly reduced by HPP to below the detection level in several conditions. In general, little effect of HPP on the instrumental colour parameters was observed, except for a slight increase in lightness, which was hardly appreciable from visual observation. High pressure processing emerges as a relevant technology for the control of Salmonella spp. and to manage the microbiological safety of raw pet food. The mathematical model can be used as decision support tool to design safer raw pet food, while keeping the desired freshness appearance of the products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据