4.7 Article

JMJD3 downregulates IL4i1 aggravating lipopolysaccharide-induced acute lung injury via H3K27 and H3K4 demethylation

期刊

ENVIRONMENTAL TOXICOLOGY
卷 38, 期 4, 页码 754-769

出版社

WILEY
DOI: 10.1002/tox.23725

关键词

acute lung injury; JMJD3; epigenetics; lipopolysaccharides; macrophage

向作者/读者索取更多资源

JMJD3 aggravates the severity of lipopolysaccharide-induced acute lung injury by affecting epigenetic modification and macrophage phenotype. JMJD3 induces H3K27me3 and H3K4me3 demethylation, which inhibits IL4i1 transcription and increases the M1/M2 ratio of macrophages, exacerbating LPS-induced lung injury. Inhibiting JMJD3 with GSK-J4 may be a potential treatment for LPS-induced acute lung injury.
The pro-inflammation M1 to anti-inflammation M2 macrophage ratio contribute to the severity of lipopolysaccharide (LPS)-induced acute lung injury (ALI). JMJD3 aggravates the inflammatory reaction through affecting epigenetic modification and macrophage's phenotype to deteriorate ALI. To explore the mechanism underlying the upregulation of the macrophage M1/M2 ratio through JMJD3, we developed an ALI mouse model using intratracheal LPS, LPS-stimulated RAW 264.7 cells, and inhibited JMJD3 using GSK-J4. H3K27me3 and H3K4me3 were investigated as JMJD3-mediated epigenetic alteration sites in vivo and in vitro. C/EBP beta and KDM5A were validated as linking factors between H3K27 and H3K4. IL4i1 was investigated as a JMJD3-mediated targeted gene to regulate the macrophage M1/M2 ratio. Chromatin immunoprecipitation was used to evaluate the relationship between H3K27me3 and C/ebp beta, C/EBP beta and Kdm5a, H3K4me3 and Il4i1. Inhibiting JMJD3 with GSK-J4 can relieve inflammation and pathological performance in ALI. JMJD3 can reduce IL4i1 expression to increase the macrophage M1/M2 ratio and aggravated ALI which process was mediated via JMJD3-indcued H3K27me3 and H3K4me3 demethylation, latter H3K4me3 demethylation inhibited IL4i1 transcription. Inhibiting JMJD3 with GSK-J4 can increase IL4i1 expression, subsequently decreasing the expressions of M1 and increasing of M2 in vivo. The over-expression IL4i1 in LPS-stimulated macrophage or inhibiting JMJD3 with GSK-J4 can both reverse the increase of the macrophage M1/M2 ratio in vitro. C/EBP beta and KDM5A were upregulated by LPS simulation, which linked JMJD3-induced H3K27-H3K4 demethylation. JMJD3 inhibited IL4i1 to increase the macrophage M1/M2 phenotype ratio and aggravate LPS-induced ALI. Using GSK-J4 to inhibit JMJD3 may facilitate the treatment of LPS-induced ALI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据