4.7 Review

Review of functionalized nano porous membranes for desalination and water purification: MD simulations perspective

期刊

ENVIRONMENTAL RESEARCH
卷 217, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114785

关键词

Nano-porous membranes; Functional groups; Water treatment; Molecular dynamics

向作者/读者索取更多资源

It is crucial to develop energy-efficient and faster methods for water treatment and desalination due to the increasing water demand and the drying out or contamination of water sources. This study reviews nano-porous structures with functional groups for desalination and water treatment and finds that a well-designed membrane should have small pore size to reject contaminants while allowing high water permeation. The addition of functional groups to membranes affects permeability and rejection rate, with hydrophilic groups increasing permeability and hydrophobic ones decreasing it.
Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据