4.7 Article

Binder-free NiO/MnO2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell

期刊

ENVIRONMENTAL POLLUTION
卷 317, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120578

关键词

Antibiotics; COD removal; Graphite and activated carbon electrode; Hospital wastewater treatment; Norfloxacin degradation

向作者/读者索取更多资源

The power performance of dual-chamber microbial fuel cells (MFCs) with two different types of base anodes (graphite felt and activated carbon cloth) coated with NiO/MnO2 for the removal of Norfloxacin (NFX) in wastewater was tested. The application of transition metal oxides in MFCs significantly improved the extracellular electron transfer, leading to reduced internal resistance and enhanced biocompatibility. The NiO/MnO2 coated graphite felt and activated carbon cloth exhibited 1.2-fold and 1.3-fold better performance, respectively.
Norfloxacin (NFX) is a commonly consumed synthetic antibiotic drug to cure many adverse infectious diseases of humans worldwide, but their presence in almost all aquatic environments has grown into severe global health concerns. In this study, the power performance of dual-chamber microbial fuel cells (MFCs) with two different types of base anodes (graphite felt and activated carbon cloth) were tested with a coating of NiO/MnO2 for removal of NFX in wastewater. As transition metal oxides have excellent electrochemical stability and a higher specific capacitance, their application in MFC for antibiotic removal and wastewater treatment would be an interesting study. Four different NFX concentrations were studied in two different base material with a coating of NiO/MnO2. Coating was done with 2 step hydro solvothermal method and modified anode surface was characterized by XRD and XPS analyses. Extracellular electron transfer between microorganisms and the modified anode improved significantly as a consequence of reduced internal resistance and a more biocompatible surface as measured by Electroscopy Impedance Spectroscopy (EIS) and polarization curves. NiO/MnO2 coated graphite felt performed 1.2 fold better than the control plain graphite felt. Similar results were found for activated carbon cloth (ACC). Modified ACC performed 1.3 fold better than the control plain ACC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据