4.7 Article

Striking impacts of biomass burning on PM2.5 concentrations in Northeast China through the emission inventory improvement

期刊

ENVIRONMENTAL POLLUTION
卷 318, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120835

关键词

Biomass burning; VIIRS; GFED; PM2.5; Northeast China; WRF-CMAQ; Aerosol direct radiative effects

向作者/读者索取更多资源

Biomass burning has significant impacts on air quality and climate, particularly in areas with agricultural burning. However, the uncertainties in biomass burning emissions, especially in agricultural burning, limit our understanding of their effects on air quality. By using an improved emission inventory and satellite data, this study evaluates the impact of biomass burning on air quality and climate in Northeast China and finds that biomass burning contributes significantly to PM2.5 concentrations in the region. The study also highlights the importance of small fires, often missed in traditional satellite products, in affecting air quality.
Biomass burning exerts substantial influences on air quality and climate, which in turn to further aggravate air quality. The biomass burning emissions in particular of the agricultural burning may suffer large uncertainties which limits the understanding of their impact on air quality. Based on an improved emission inventory of the Visible Infrared Imaging Radiometer Suite (VIIRS) relative to commonly used Global Fire Emissions Database (GFED), we thoroughly evaluate the impact of biomass burning on air quality and climate during the episodes of November 2017 in Northeast China which is rich in agriculture burning. The results first indicate substantial underestimates in simulated PM2.5 concentrations without the inclusion of biomass burning emission inventory, based on a regional air quality model Weather Research and Forecasting model and Community Multiscale Air Quality model (WRF-CMAQ). The addition of biomass burning emissions from GFED then reduces the bias to a certain extent, which is further reduced by replacing the agricultural fires data in GFED with VIIRS. Numerical sensitivity experiments show that based on the improved emission inventory, the contribution of biomass burning emissions to PM2.5 concentrations in Northeast China reaches 32%, contrasting to 15% based on GFED, during the episode from November 1 to 7, 2017. Aerosol direct radiative effects from biomass burning are finally elucidated, which not only reduce downward surface shortwave radiation and planetary boundary layer height, but also affect the vertical distribution of air temperature, wind speed and relative humidity, favorable to the accumulation of PM2.5. During November 1-7, 2017, the mean daily PM2.5 enhancement due to aerosol radiative effects from VIIRS_G is 16 mu gm? 3, a few times higher than that of 2.8 mu gm? 3 from GFED. The study stresses the critical role of biomass burning, particularly of small fires easily missed in the traditional low-resolution satellite products, on air quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据