4.7 Article

Water-soluble iron in PM2.5 in winter over six Chinese megacities: Distributions, sources, and environmental implications

期刊

ENVIRONMENTAL POLLUTION
卷 314, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120329

关键词

Water-soluble iron; Spatial distributions; Source identification; Reactive oxygen species

资金

  1. National Natural ScienceFoundation of China [42107107, 41877383]
  2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS [SKLLQG2103, 3712933]

向作者/读者索取更多资源

Water-soluble iron (ws-Fe) in PM2.5 plays a crucial role in biogeochemical cycles and atmospheric chemical processes. The concentration of ws-Fe in Chinese urban areas is higher than in the United States and remote oceans. The dominant form of ws-Fe differs in Beijing and other cities, with a positive correlation observed between ws-Fe and particle-bound reactive oxygen species (ROS).
Water-soluble iron (ws-Fe) in PM2.5 plays a crucial role in biogeochemical cycles and atmospheric chemical processes. The anthropogenic sources of ws-Fe have attracted considerable attention owing to its high solubility. However, few studies have investigated the content of PM2.5 ws-Fe in the urban environment. In the present study, we characterized the spatial distributions of ws-Fe in six Chinese megacities in the winter of 2019. Furthermore, we investigated the speciation of PM(2.5 )ws-Fe (ws-Fe(II) and ws-Fe(III)), potential sources of ws-Fe, and association between ws-Fe and particle-bound reactive oxygen species (ROS). Higher ws-Fe concentrations were observed in northern cities (Harbin, Beijing, and Xi'an) than in southern cities (Chengdu, Wuhan, and Guangzhou). Moreover, atmospheric ws-Fe concentrations in urban China were several folds higher than those in urban areas of the United States and several orders of magnitude higher than those in remote oceans, indicating that China is a key contributor to global atmospheric ws-Fe. The dominant form of ws-Fe was ws-Fe(III) in Beijing, whereas ws-Fe(II) was more abundant in the other five cities. The concentrations of ws-Fe and ws-Fe(II) concentrations increased with increasing PM2.5 levels in all the six cities, however, we did not observe any consistent pattern of ws-Fe(III) concentration. Biomass burning was a dominant source of ws-Fe in all cities except Beijing. A strong positive correlation was observed between particle-bound ROS content and ws-Fe; this finding is consistent with those of previous studies indicating that ws-Fe in PM2.5 notably influences atmospheric chemical processes and human health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据