4.7 Article

Modelling the response of urban lichens to broad-scale changes in air pollution and climate

期刊

ENVIRONMENTAL POLLUTION
卷 315, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120330

关键词

Urban macroecology; Spatial scales; Atmospheric pollution; Ecological indicator; Biodiversity-based metrics; Trait-based diversity

向作者/读者索取更多资源

In order to create more resilient cities, it is important to understand the effects of global change drivers in urban areas. Previous studies have used lichens as ecological indicators to monitor these effects, but only in single-city studies. This study aimed to quantify the impact of broad-scale environmental drivers on lichen biodiversity-based metrics in an urban context, where local drivers also play a role. By sampling epiphytic lichens across a continental gradient, the researchers found that 15% of the variance in lichen metrics could be explained by broad-scale drivers, with air pollution showing more importance than climate. This suggests that further research is needed to understand the effects of climate change, and that both spatial scales should be considered when using lichens as ecological indicators in cities at continental to global scales.
To create more resilient cities, it is important that we understand the effects of the global change drivers in cities. Biodiversity-based ecological indicators (EIs) can be used for this, as biodiversity is the basis of ecosystem structure, composition, and function. In previous studies, lichens have been used as EIs to monitor the effects of global change drivers in an urban context, but only in single-city studies. Thus, we currently do not understand how lichens are affected by drivers that work on a broader scale. Therefore, our aim was to quantify the variance in lichen biodiversity-based metrics (taxonomic and trait-based) that can be explained by environmental drivers working on a broad spatial scale, in an urban context where local drivers are superimposed. To this end, we performed an unprecedented effort to sample epiphytic lichens in 219 green spaces across a continental gradient from Portugal to Estonia. Twenty-six broad-scale drivers were retrieved, including air pollution and bio-climatic variables, and their dimensionality reduced by means of a principal component analysis (PCA). Thirty-eight lichen metrics were then modelled against the scores of the first two axes of each PCA, and their variance partitioned into pollution and climate components. For the first time, we determined that 15% of the metric variance was explained by broad-scale drivers, with broad-scale air pollution showing more importance than climate across the majority of metrics. Taxonomic metrics were better explained by air pollution, as expected, while climate did not surpass air pollution in any of the trait-based metric groups. Consequently, 85% of the metric variance was shown to occur at the local scale. This suggests that further work is necessary to decipher the effects of climate change. Furthermore, although drivers working within cities are prevailing, both spatial scales must be considered simultaneously if we are to use lichens as EIs in cities at continental to global scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据