4.7 Article

Occurrence, distribution, and migration of antimony in the Zijiang River around a superlarge antimony deposit zone

期刊

ENVIRONMENTAL POLLUTION
卷 316, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120520

关键词

Antimony (sb); Zijiang river (ZR); Distribution; Migration; Superlarge antimony deposit zone

向作者/读者索取更多资源

This study analyzed the occurrence, distribution, migration, and influencing factors of antimony (Sb) in the Zijiang River. The study found that mining and smelting were the main sources of Sb in the river. The concentration of Sb showed a decreasing trend from the tributaries to the mainstream, and the retention and accumulation of sediments led to the secondary release of Sb.
Under the environmental changes associated with mine tributaries entering mainstream rivers, differences in the distributions and migration behaviors of metal(loid)s can be found, but the behavior of antimony (Sb) is still poorly understood in this regard. We analyzed the occurrence, distribution, migration, and influencing factors of the Sb concentration in the water body of the Zijiang River (ZR) around a superlarge Sb deposit zone. The total Sb concentrations were 1.45-15.66 mu g/L, 3.16-133.63 mg/kg, and 0.83-41.82 mu g/L in the ZR surface waters, sediments, and pore waters, respectively; Sb(V) was the predominant form of Sb found in the surface waters. Mining and smelting were the main sources of Sb in the ZR. Spatially, the Sb concentration showed a decreasing trend from the tributaries to the ZR mainstream. In the ZR, the surface-water Sb concentration showed an increasing trend from the upstream to the downstream, while in the sediments and pore waters, the midstream Sb concentrations were higher than the upstream and downstream concentrations; this finding was related to the sediment retention and accumulation behaviors of reservoirs and dams resulting in the secondary release of Sb in sediments. Sb tended to be bound to the solid phase, dominated by amorphous iron (Fe)/aluminum (Al) oxides and calcium in sediments. This study highlights that, based on current Sb migration patterns, the accumulation of sediments carried by tributaries near Sb mines in the midstream ZR and the Sb pollution caused by sediment release will be long-term, and the related environmental consequences need to be further predicted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据