4.7 Review

A comprehensive review of primary strategies for tar removal in biomass gasification

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 276, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2022.116496

关键词

Biomass; Gasification; Primary strategies; Tar removal; In situ catalysts; Reactor design

向作者/读者索取更多资源

In the current energy scenario, biomass gasification is considered a key technology for producing heat, power, and biofuels. However, the presence of high levels of tar in syngas poses challenges to the commercialization of biomass gasification technologies. This article provides a comprehensive overview of tar formation and elimination mechanisms, the adverse effects of tar, and tar analyzing techniques. It also summarizes the primary strategies for tar removal, including the impact of operation parameters, catalyst utilization, and reactor design on tar formation and elimination.
In the current energy scenario, the production of heat, power and biofuels from biomass has become of major interest. Amongst diverse thermochemical routes, gasification has stood out as a key technology for the largescale application of biomass. However, the development of biomass gasification is subjected to the efficient conversion of the biochar and the mitigation of troublesome by-products, such as tar. Syngas with high tar content can cause pipeline fouling, downstream corrosion, catalyst deactivation, as well as adverse impact on health and environment, which obstruct the commercialization of biomass gasification technologies. Since the reduction of tar formation is a key challenge in biomass gasification, a comprehensive overview is provided on the following aspects, which particularly include the definition and complementary classifications of tar, as well as possible tar formation and transformation mechanisms. Moreover, the adverse effects of tar on downstream applications, human health or environment, and tar analyzing techniques (online and off-line) are discussed. Finally, the primary tar removal strategies are summarized. In this respect, the effect of key operation parameters (temperature, ER and S/B), catalysts utilization (natural and supported metal catalysts) and the improvement of reactor design on tar formation and elimination was thoroughly analyzed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据