4.7 Article

Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach

期刊

ENERGY
卷 261, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.125236

关键词

Solar water heating system; Delta-shaped obstacle; Hindrance promoter; Thermo-hydraulic performance; Optimization

向作者/读者索取更多资源

This study investigates the performance of delta-shaped obstacles in a solar water heating system through experimental analysis and optimization. The findings suggest that different parameter combinations have an influence on the system's performance. The application of the CRITIC-COPRAS approach helps identify the optimal design alternative for maximum thermal enhancement. The sensitivity analysis confirms the robustness of the results.
This study reports on the performance of delta-shaped obstacles in a solar water heating system (SWHS) by means of experimental analysis and optimization. The influence of different parameter combinations such as Reynolds number (200, 600, 1000, 1400, 1800), pitch ratio (0.5, 1, 1.5), blockage ratio (0.15, 0.20, 0.25), and angle of attack (45 degrees) on Nusselt number, friction factor and thermo-hydraulic performance of SWHS were analyzed. For the combination of Reynolds number = 1800 and pitch ratio = 0.5, the Nusselt number remained highest for 0.25 of blockage ratio, whereas the friction factor remained lowest for a blockage ratio of 0.15. The maximum thermo-hydraulic efficiency was achieved using Reynolds number = 200, pitch ratio = 0.5, and blockage ratio = 0.20. The obtained results were intensely dependent on parameter combinations without any pronounced trend. Therefore, criteria importance through inter-criteria correlation (CRITIC) and complex proportional assessment (COPRAS) approach was implemented to find optimal design alternative. The results of the hybrid CRITIC-COPRAS approach showed that the combination of Reynolds number = 1800, pitch ratio = 0.5, blockage ratio = 0.20, and angle of attack = 45 degrees is the best alternative for maximum thermal enhancement in SWHS. The sensitivity analysis proved the robustness of the results that the first-ranked alternative is the most dominant in all scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据