4.7 Review

Heating and cooling networks: A comprehensive review of modelling approaches to map future directions

期刊

ENERGY
卷 261, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.125060

关键词

Energy system modelling; Heating and cooling networks; Interdisciplinary model; Modelling tools; Smart energy system

向作者/读者索取更多资源

Future energy systems require the integration of renewable energy resources to achieve decarbonization and contribute to global net zero targets for heating and cooling. Traditional energy modeling approaches have limitations in terms of computational time, precision, and scalability. This study aims to evaluate current tools and techniques for modeling heating and cooling networks and propose a hybrid approach that utilizes recent technical advancements. The review concludes that energy models need to become interdisciplinary and multi-objective to simulate a smart energy system.
Future energy systems rely on integrating renewable energy resources to decarbonise the heating and cooling sectors and contribute to global net zero targets. Traditional approaches to energy modelling are segregated as focus tends to be on individual objectives such as minimising operational cost. Furthermore, they are limited with respect to computational time, level of precision and scalability. Model complexity is greater for district heating and cooling systems when compared to power systems due to the thermal behaviour and fluid dynamic principles which are present. Prevailing research tends to deliver a detailed analysis of specific elements within the network, but an approach for visualising the whole system is still missing. This study aims to evaluate the current tools and techniques used to model heating and cooling networks and then propose a more up to date hybrid approach that utilises recent technical advancements. A detailed literature review outlines existing modelling methods and assesses the capabilities of available software tools. The results are summarised in a Pugh Matrix using relevant criteria to compare and select the most appropriate methods. The review concludes that energy models must evolve to become interdisciplinary and multi-objective to simulate a smart energy system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据