4.7 Article

Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications

期刊

ENERGY
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.125491

关键词

Cellulose; Palmitic acid; Microencapsulation; Thermal energy storage; Phase change material

向作者/读者索取更多资源

This study developed a microencapsulated material for thermal energy storage based on poly(allyl methacrylate) and palmitic acid, which exhibited a good latent heat storage capacity and showed potential for thermal management applications, particularly in buildings.
This study aimed to develop a promising thermal energy storage material based on poly(allyl methacrylate (AMA))-based palmitic acid (PA) microencapsulation using emulsion polymerization. Poly(AMA) and PA were chosen as the capsule shell and core materials, respectively. The synthesized microcapsules exhibited a good latent heat storage capacity of 143-188 J/g. This study also aimed to evaluate the effect of the core material ratio of the microcapsules on the thermal, structural, and chemical properties of PA microcapsules. To determine the thermal performance of the prepared microcapsules, mortar-based composite materials containing PA micro -capsules were prepared at a ratio of 90/10 (wt% mortar/micro phase change material) and analyzed during heating and cooling using infrared techniques. The analysis showed that the temperature of the composite materials containing PA microcapsules was 6.6 degrees C lower than that of the reference composite after 60 min of heating. This indicates that mortar composites containing PA microcapsules are less affected by heating and cooling and can therefore be applied as promising energy storage materials for thermal management applica-tions, particularly in buildings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据