4.5 Article

Distributed Network-Constrained P2P Community-Based Market for Distribution Networks

期刊

ENERGIES
卷 16, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/en16031520

关键词

energy communities; distributed energy resources; energy trading; distributed optimization; optimal power flow

向作者/读者索取更多资源

Energy communities aim to empower consumers and maximize the utilization of local renewable energy sources. This work proposes a distributed community-based local energy market to minimize costs and consider technical network constraints. The proposed method is tested on a distribution network and compared to a centralized approach. Integration of optimal power flow increases computation time, but the proposed market structure guarantees P2P exchanges and community benefits.
Energy communities have been designed to empower consumers while maximizing the self-consumption of local renewable energy sources (RESs). Their presence in distribution systems can result in strong modifications in the operation and management of such systems, moving from a centralized operation to a distributed one. In this scope, this work proposes a distributed community-based local energy market that aims at minimizing the costs of each community member, accounting for the technical network constraints. The alternating direction method of multipliers (ADMM) is adopted to distribute the market, and preserve, as much as possible, the privacy of the prosumers' assets, production, and demand. The proposed method is tested on a 10-bus medium voltage radial distribution network, in which each node contains a large prosumer, and the relaxed branch flow model is adopted to model the optimization problem. The market framework is proposed and modeled in a centralized and distributed fashion. Market clearing on a day-ahead basis is carried out taking into account actual energy exchanges, as generation from renewable sources is uncertain. The comparison between the centralized and distributed ADMM approach shows an 0.098% error for the nodes' voltages. The integrated OPF in the community-based market is a computational burden that increases the resolution of the market dispatch problem by about eight times the computation time, from 200.7 s (without OPF) to 1670.2 s. An important conclusion is that the proposed market structure guarantees that P2P exchanges avoid the violation of the network constraints, and ensures that community agents' can still benefit from the community-based architecture advantages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据