4.5 Article

Influence of Red Mud Catalyst and Reaction Atmosphere on Hydrothermal Liquefaction of Algae

期刊

ENERGIES
卷 16, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/en16010491

关键词

hydrothermal liquefaction; algae; red mud; ethylene; reaction environment; catalyst; biocrude

向作者/读者索取更多资源

This study investigated the effects of reaction environments on biocrude production from Tetraselmis sp. algae strain by HTL process using red mud (RM) based catalyst. The Ni/RM catalyst produced the highest biocrude yield and reduced sulfur and oxygen content, while the RRM catalyst maximized the biocrude carbon content.
Algae are a diverse group of aquatic organisms and have a potential to produce renewable biofuel via hydrothermal liquefaction (HTL). This study investigated the effects of reaction environments on biocrude production from Tetraselmis sp. algae strain by HTL process using red mud (RM) based catalyst. The inert (N-2), ethylene (C2H4), reducing (10% H-2/90% N-2), and oxidizing (10% O-2/90% N-2) environments were applied to the non-catalytic as well as catalytic HTL treatments with two forms of RM catalysts: RM reduced at 500 degrees C (RRM) and nickel-supported RM (Ni/RM). Under nitrogen, ethylene and reducing environments, the biocrude yield increased by the following trend: No Catalyst < RRM < Ni/RM. The Ni/RM catalyst produced the highest biocrude yield (37 wt.%) in an ethylene environment, generated the lowest total acid number (14 mg KOH/g) under inert atmosphere, and lowered sulfur (33-66%) and oxygen (18-30%) from biocrude products irrespective of environments. The RRM catalyst maximized the biocrude carbon content (61 wt.%) under a reducing environment and minimized the heavy metal and phosphorus transfer from the feedstock to biocrude in studied ambiences. The reducing environment facilitated mild hydrotreatment during HTL reaction in the presence of RRM catalyst. Among the non-catalytic experiments, the reducing atmosphere optimized carbon content (54.3 wt.%) and calorific value (28 MJ/kg) with minimum oxygen amount (27.2 wt.%) in biocrudes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据